
 International Journal of Advanced Research in ISSN: 2394-2819

E Engineering Technology & Science

 Email: editor@ijarets.org Volume-4, Issue-2 February- 2017 www.ijarets.org

Copyright@ijarets.org Page 14

REAL-TIME PROGRAMMING SYSTEMS

A.M. Sallam

Egyptian Armed Forces, Egypt

ABSTRACT: Real-time applications are becoming increasingly important in our daily lives and can be found

in diverse environments such as the automatic braking system on an automobile, large communication

systems, encryption system, security system, robotic environmental samplers on a space station, and most of

the military systems. The use of real-time programming techniques is rapidly becoming a common means for

improving the predictability of our technology. The discussion in this paper will be on the meaning of the

Real-Time system, its definitions, and the generations of the it from the analog system till we reach the Real-

Time programming using Real-Time Operating System (RTOS).

KEYWORDS: Real-Time system, Real-Time programming, RTOS.

INTRODUCTION

Real-Time (RT) system is a very important issue in the world, many systems used for many mission

critical applications must be RT it is using in any applications such as our cars, mobile phones,

communication system, nuclear station ,ATMs system, space craft and so on, the most important issue in the

RT system it has to respond to externally generated input stimuli within a finite and specified [1], A RT

system has been described as one which "controls an environment by receiving data, processing them, and

returning the results sufficiently quickly to affect the environment at that time."The term "real-time" is also

used in simulation to mean that the simulation's clock runs at the same speed as a real clock, and in process

control and enterprise systems to mean "without significant delay”. This paper is organized as follows. RT

definition is presented in section 2. In section 3, the characteristics of RT system is presented, classifications

of RT system presented in section 3, while problem of schedule and RT approach is presented in section4

and 5, section 6 presented RT performance, section 7 presented data structure and control logic, section 8

and 9 presented programming language and embedded Linux versus desktop Linux, section 10 presented

H/W system construction, while conclusion is presented in section 11.

REAL-TIME DEFINITION

 A Real-Time (RT) system or application is one in which the correctness of depends on the timeliness

and predictability of the application as well as the results of computations and logical correctness, but

also on the time at which the result is produce. In other words, “A late answer is a wrong answer”.

 Reactive system: continuous interaction with the environment (as opposed to information processing)

 Embedded system: computer system encapsulated in its environment, combination of computer

hardware and software, dedicated to specific purpose.

 Safety-critical system: a failure may cause injury, loss of lives, significant financial loss.

 Hard RT system missing a deadline: failure of the system aircraft control, nuclear plant control,

detection of critical conditions, etc.

 Soft RT system missing a deadline: undesirable for performance reasons multimedia application,

booking system, displaying status information, most systems combined from both hard and soft

deadlines.

 Firm deadline: missing a deadline makes the task useless (similar to hard deadline), however the

deadline may be missed occasionally (similar to soft deadline).

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 15

 Generalization: cost function associated with missing each deadline.

 Mixture of hardware and software: use of special purpose hardware and architectures.

 Concurrent control of separate system components: devices operate in parallel in the real-world, better

to model this parallelism by concurrent entities in the program.

 Extreme reliability and safety: RT systems are usually safety-critical.

 Deadline: is a given time after a triggering event, by which a response has to be completed (i.e. it is the

time which the task should be complete).

 Schedule: that's the objective to find.

CHARACTERISTICS OF REAL-TIME SYSTEM

The real-time system should have the following two properties:

1- The functions of the real time system must be predictable (the same data input will produce the same

data output).

2- Timing behavior must be predictable i.e. the system should meet the temporal constraints (e.g.

deadline, response time).

Note: Predictable means that we can compute the system temporal behavior before the execution time.

To assist the real-time application the designer should be aware about meeting the three goals:

1- The system should provide the facility of the inter-process communication and synchronization.

2- The system should have fast interrupt response time.

3- The systems must do simultaneous tasks. Figure 1 illustrates the generic component of RT system and

the main idea of the it.

 Figure 1 Block diagram of a generic Real-Time system

Environment

Control

system

Sensory

system

Actuation

system

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 16

CLASSIFICATIONS OF REAL-TIME SYSTEMS:

We can classify RT systems as follows and figure 2 will Shows that:

1- Hardware approach:

a- Analog circuits (vacuum tubes, analog filters, coils, capacitors …).

b- Digital circuits (logic gates, digital filters, timers …).

2- Combined Hardware and Software (Embedded systems) approach:

a- Microprocessor/Microcontroller.

b- Digital Signal Processor (DSP).

c- Field Programmable Gate Array (FPGA).

3- Parallel Processing Programming approach.

4- Software approach (Embedded Linux, Embedded Windows).

5- Software based Hardware approach by using of Graphical Processor Unit (GPU).

In the following section I will illustrate the definition and method of fourth classification Software

approach that uses the Linux operating system.

PROBLEM OF SCHEDULING

The definition of schedule: it is the timetable for a project, program or portfolio. It shows how the

work will progress over a period of time and takes into account factors such as limited resources and

estimating uncertainty; and in RT Operating System (RTOS) defined as:

1- Part of the kernel responsible for deciding which task should be executing at any part icular time. The

kernel can suspend and later resume a task many times during the task lifetime.

2- The scheduling policy is the algorithm used by the scheduler to decide which task to execute at any

point in time. The policy of a (non real time) multi user system will most likely allow each task a "fair"

proportion of processor time. The policy used in RT/Embedded systems is more complex, and will

describe in following.

Real-Time System

H/W approach
Combined H/W

& S/W approach

Parallel Processing

programming

S/W approach

S/W based H/W

approach (GPU)

Analog

Circuits

Digital

Circuits
µ-processor/

µ-controller

µproccessor

DSP FPGA Embedded

Linux

Embedded

Windows

Figure 2 Classification of RT systems

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 17

SCHEDULING IN RTOS

Given a set of RT tasks and the resources in the system, task assignment and scheduling is the

process of determining where and when each task will execute. For example, consider a real-time application

with six tasks a, b . . . f with precedence and timing constraints as shown in Figure 3. In this figure, the

vertices represent the tasks and the directed arcs represent the precedence relation. For instance, tasks a and b

must complete before task d can begin, because there are directed arcs from a to d and from b to d. Each

vertex has a weight associated with it which represents the time required to execute the corresponding task.

The timing constraints are such that tasks e and f must complete within 31 and 16 time units, respectively,

assuming that all tasks are ready to execute at time 0 subject to their precedence constraints.

Figure 4(a) and (b) shows two possible schedules for this application on a system with two

processors. In Figure 4 (a), tasks b, c, and f are assigned to one processor and the remaining tasks are

assigned to the other processor. On the first processor, task b executes from time 0 to 5, task c executes from

time 5 to 15, and so on. Likewise, on the second processor. Since, in this schedule, task f does not complete

its execution by its deadline of 16, a key timing constraint of the application is not satisfied. However, the

schedule shown in Figure 4(b) satisfies the precedence and timing constraints of all tasks, and therefore, it is

better suited for real-time applications. The problem of scheduling is to identify schedules like the one in

Figure 4(b) given the application as in Figure 3.

Scheduling algorithms for real-time applications can be classified along many dimensions; the first is the

periodicity [2]:

Figure 3 Example of a RT application

Figure 4 illustrate the difference between RT and Non-RT

of a RT application

(a) Infeasible schedule

(b) Feasible schedule

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 18

1- Some scheduling algorithms deal only with periodic tasks.

2- While others are intended only for a-periodic tasks.

3- There are very few algorithms which deals with both types of tasks since the approach needed to deal

with them differ considerably. Likewise, some scheduling algorithms can only handle.

The second classification of scheduling algorithms also varies significantly depending on the type of

computer system they are intended for [3, 4]:

1- Some algorithms are for uni-processors.

2- While others are for multiprocessor systems. Among multiprocessor systems, the scheduling

algorithms can depend on whether it is a shared-memory or a message-passing system. The type of

interconnection network can also affect the scheduling algorithm.

REAL-TIME SOFTWARE APPROACH

One of the most and widely used approach is the Real-Time Software approach because it depend

upon the uses of Software like C, and Ada. We will illustrate the RTOS (Real-Time Operating System)

Linux. RTOS: is an operating system (OS) intended to serve real-time application process data as it comes

in, typically without buffering delays. A real-time application (RTA) is an application program that functions

within a time frame that the user senses as immediate or current. The latency must be less than a defined

value, usually measured in millisecond; the use of RTAs is called real-time computing (RTC). An example is

payroll and billing systems. In contrast, real time data processing involves a continual input, process and

output of data. Data must be processed in a small time period (or near real time). Radar systems, customer

services and bank ATMs are examples.

ADVANTAGES OF LINUX AND OPEN-SOURCE FOR EMBEDDED SYSTEMS

1- Reusing of the component:

a- The key advantage of Linux and open-source in embedded systems is the ability to re-use

components.

b- The open-source ecosystem already provides many components for standard features, from hardware

support to network protocols, going through multimedia, graphic, cryptographic libraries, etc.

c- As soon as a hardware device, or a protocol, or a feature is wide-spread enough, high chance of

having open-source components that support it.

d- Allows quickly designing and developing complicated products, based on existing components.

e- No-one should re-develop yet another operating system kernel, TCP/IP stack, USB stack or another

graphical toolkit library.

f- Allows to focus on the added value of your product.

2- Low cost:

a- Free software can be duplicated on as many devices as you want, free of charge.

b- If your embedded system uses only free software, you can reduce the cost of software licenses to

zero. Even the development tools are free, unless you choose a commercial embedded Linux edition.

c- Allows to have a higher budget for the hardware or to increase the company’s skills and knowledge.

3- Full control:

a- With open-source, you have the source code for all components in your system.

b- Allows unlimited modifications, changes, tuning, debugging, optimization, for an unlimited period of

time.

c- Without lock-in or dependency from a third-party vendor.

d- To be true, non open-source components must be avoided when the system is designed and

developed.

e- Allows having full control over the software part of your system.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 19

4- Quality:

a- Many open-source components are widely used, on millions of systems.

b- Usually higher quality than what an in-house development can produce, or even proprietary vendors.

c- Of course, not all open-source components are of good quality, but most of the widely-used ones are.

d- Allows to design your system with high-quality components at the foundations.

5- Eases testing of new features:

a- Open-source being freely available, it is easy to get a piece of software and evaluate it.

b- Allows to easily studying several options while making a choice.

c- Much easier than purchasing and demonstration procedures needed with most proprietary products.

d- Allows to easily exploring new possibilities and solutions.

6- Taking part into the community:

a- Possibility of taking part into the development community of some of the components used in the

embedded systems: bug reporting, test of new versions or features, patches that fix bugs or add new

features, etc.

b- Most of the time the open-source components are not the core value of the product: it’s the interest of

everybody to contribute back.

c- For the engineers: a very motivating way of being recognized outside the company, communication

with others in the same field, opening of new possibilities, etc.

d- For the managers: motivation factor for engineers, allows the company to be recognized in the open-

source community and therefore get support more easily and be more attractive to open-source

developers.

REAL-TIME PERFORMANCE

Real Time Performance The term “real time” is bandied about a lot, so I will define what it implies

before I describe the real time features of Linux [2]. By “real time” I mean the ability to put deterministic

bounds on the time the elapses between an interrupt occurring and the corresponding interrupt service routine

to execute. Other items, such as context switch time and system clock granularity, are related, but not central,

issues. In general, real time performance can be grouped into two broad categories Hard Real-Time and Soft

Real-Time [3].

Hard Real-Time: means that a late answer is a wrong answer. If the system does not respond to an interrupt

within a fixed, predictable amount of time disastrous things can happen. Some examples are the nuclear

system, Intensive Care Unit (ICU) in medical application, most of the defense application, avionics, etc.

Soft Real-Time: on the other hand, doesn’t have any dire consequences associated with a late answer but

relies on deterministic timing of interrupt handlers to achieve top performance. It’s important to remember

that although the actual performance numbers are important, real time characteristics are actually more about

deterministic behavior than raw speed. A good example is the sound system in your PC you can miss a few

bits, no big deal, but miss too many and you are going to eventually degrade the system. Similar would be

seismic sensors. If you miss a few data points, no big deal, but you have to catch most of them to make sense

the data. More importantly, nobody is going to die if they don't work correctly.

DATA STRUCTURE AND CONTROL LOGIC

Data Structure:

Real-time programmers have to deal with some data structures that are normally hidden from high-

level programmers. The task control block is where the CPU stores the state of the last run task so it can be

restored. The semaphore (it is hardware or software flag used in multitasking systems and is defined as a

protected integer variable that can facilitate and restrict access to shared resources in a multi-processing

environment. The two most common kinds of semaphores are counting semaphores and binary semaphores),

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 20

is used to coordinate processes and shared resources. There are two types of semaphores: binary and

counting. A binary semaphore is used to provide mutual exclusion. A counting semaphore is used when a

resource can be used by more than one task at a time. The basic counting type is an integer variable that is

accessed only through two basic operations, wait and signal; however, an initialize operation is also usually

provided. Modifications to the integer value of the semaphore must be executed without interruption. A

macro is a label that replaces a block of instructions that is used more than once, but only coded once. It

differs from a subroutine in that the assembler inserts the code where the call is made rather than having a

jump-to-it command. It works by text substitution and is usually faster than a subroutine but takes up more

memory. A pipe is a stream of data used to connect tasks, or to provide task communication. A buffer, like a

first-in-first-out buffer, can implement it. This eliminates the need to use a file to store temporary results. A

pipe self-regulates its flow so that it uses less disk space than a temporary file. A script is a file of characters

used for input or instructions to a program. The programmer can use it to simulate an interactive user or

other I/O device. A script file could be a list of commands for a command interpreter such as a batch file. A

communications port consists of a queue to hold messages and two semaphores. One semaphore controls

producers, or the process that generates messages, and the other controls consumers, which are the processes

that use the messages.

Control Logic (Structure):

Two basic software control structures are [4]:

1- The polling loop system. In a polling loop, the program examines each input in turn to see if an event

has occurred. The program structure is a loop, and the inputs to be examined are predetermined. If an

event occurs, the polling is stopped, some action is taken, and the polling continues. Controlling

refrigerator temperature could be done with a simple polling loop. The temperature would be read as

input and the compressor turned on or off based on the reading. If the temperature is within controlled

limits, no action is taken. There are three kinds of event-driven systems: foreground/background,

multitasking, and multiprocessor.

2- The event-driven system, the program loops (sometimes called a spin loop) until an interrupt occurs, at

which time the loop stops and services the interrupt, and then continues. Interrupt latency is the interval

of time measured from the instant an interrupt is asserted until the corresponding ISR begins to

execute. Remember that an interrupt request is a request. The processor may have some critical

processing to finish before it responds and services the request. Context switching time is the time the

operating system takes to store the state of the processor or the contents of the registers before it begins

to process another task. Because the context switching time and interrupt latency may not be constant

times, making the system predictable can be a challenge for the real-time programmer.

Microcontrollers come with a monitor program that allows programmers to develop and execute

software. Do not confuse this monitor with the screen monitor. The word monitor is also used for a shared

data structure that contains a semaphore. A monitor for a microcontroller is a program that combines a

debugger, some device drivers, and a bootstrap loader program. If provided, it is usually part of the read-only

memory. The bootstrap program initializes the system by setting the registers to known states, and then it

calls in or loads the rest of the required software routines. A monitor may include an assembler, which is a

program that translates source code into object code, and can also produce a listing file. A linker combines

one or more object code files to produce a hex file. A loader converts the hex file into an executable form

called a binary file. The foreground/background system is basically a polling loop with interrupts enabled.

The loop runs in the background. Only critical processing is done inside the interrupt.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 21

REAL-TIME PROGRAMMING LANGUAGE

A lot of real-time programming is done in assembly language but the most popular language is:

1- C is popular, as well as C++ [5, 6] (it is a popular language for any programmer).

2- Forth [2] (Forth is an imperative stack-based computer programming language and environment

originally designed). Although Forth is an interpreted language, it is efficient because of its stack-

oriented design. Java is also being used; or rather a form of Java is being used. A language with

automatic garbage collection is not a good choice for real-time because it hinders determinism (The

deterministic nature of a law of the Universe does not entail the predictability of its results or their

precision [7]), but there is a working group making a real-time version of Java, the Real-Time

Specification for Java.

3- Ada was designed for real time and is the most powerful of those mentioned. The Ada language

specification is devoted to real-time issues. The strong type checking can be turned off to increase

speed by using a pragma, while “Predictability is extremely important in real-time programming, and to

get it, you need to keep track of time. Response time is the time it takes the computer to recognize and

respond to an external event.

4- You can use MATLAB and Simulink with Texas Instrument DSP’s to get Real Time application in

easy way [8].

EMBEDDED LINUX VERSUS DESKTOP LINUX

Linux operating system is used in desktop, servers and in embedded system also. In embedded

system it is used as Real Time Operating System. There are so many products in the market that use

embedded Linux. Embedded system requirements are very much different then requirements of desktop

system [9]. The following comparison illustrates the difference between them.

In comparison Embedded Linux Desktop Linux

Development

Environment

Linux kernel running in the

embedded system product / single

board computer / development

board.

Linux kernel running on Desktop /

Laptop.

Real Time response
Real time Linux kernel is used.

Kernel response is deterministic.

Linux kernel running in desktop /

laptop is not real time. Kernel

response is not deterministic for

response against events.

Purpose of using

Linux kernel is to perform

particular function.

Purpose of using Linux kernel to

many works for user.

Example of usage

Used in Video Streamer to do the

function of converting MPEG4

and sending video stream on

network

Used in desktop to run so many

different applications.

Kernel foot print
Embedded Linux kernel footprint

is less. Around 1 MBs

Desktop Linux kernel footprint is

more around 100 MB.

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 22

HARDWARE SYSTEM CONSTRUCTION:

RT applications are becoming increasingly important in our daily lives and can be found in diverse

environments such as the automatic braking system on an automobile, a lottery ticket system, or robotic

environmental samplers on a space station. The use of real-time programming techniques is rapidly

becoming a common means for improving the predictability of our technology.

Real-time programmers must have a intimate relationship with computer hardware, and if there is one, the

operating system. Thus, another name for real-time programming is low-level programming, and at this low

level, the silicon world looks a lot different from high-level application programming.

There are two types of H/W choices:

1- Inexpensive hardware choices for controlling a real-time project include microcontrollers like the

Motorola 68HC11, Intel 8051, or PIC 16F84. Microcontroller is optimized for data acquisition and

control purposes. It contains a central processing unit (CPU), random access memory, read only

memory, serial and parallel I/O ports, an analog to digital converter, and a timer circuit. All of these

systems communicate via a data bus as in figure 5 (a), a microcontroller can be defined as a

microprocessor with special hardware support.

2- A personal computer system could be used if the operating system allows access to peripheral ports.

The basic requirements are input, some processing capability, and an output as in figure 5 (b).

CONCLUSIONS

From the above, I think that embedded Linux has a bright future; because to the ability to run on

many different processors, lack of the requirement for an MMU and extremely low cost are huge factors.

Also, its popularity seems to be rising rapidly and there is a large installed base of developers rapidly gaining

experience.

Of course everything has its drawbacks. The embedded Linux is very fragmented and requires more

research than other operating systems to find the configuration that works best for your design. Its

requirement of a 32-bit microprocessor and minimal footprint is still too big for some embedded devices.

This is true of Windows CE as well and, although the two have a large overlap, embedded Linux seems to be

winning the battle in terms of the number of devices that it can be adapted to. The embedded system market

has been exploding in the past few years and Linux is certainly in the heart of it.

(b) General-Purpose Microprocessor System

Figure 5 Block diagram of the General-Purpose Microprocessor and Microcontroller

(a) Microcontroller

International Journal of Advanced Research in Engineering Technology and Sciences ISSN 2349-2819
 www.ijarets.org Volume-4, Issue-2 February- 2017 Email- editor@ijarets.org

Copyright@ijarets.org Page 23

REFERENCES
1. Stefan M. Petters: Real-Time Systems, NICTA 2007/2008.

2. Andrew Tucker: An Overview of Embedded Linux, CSE585 (Design and Implementation of Digital Systems), March

2000.

3. Radek Pelanek: http: Real Time System Introduction, //www.fi.muni.cz/~xpelanek/IA158/.

4. K. G. Shin, P. Ramanathan: Real-Time Computing: A New Discipline of Computer Science and Engineering,

Proceedings of the IEEE, vol. 82, No. 1, January 1994.

5. Dennis Ludwig: An Introduction to Real-Time Programming, the Journal of Defense Software Engineering, November

2003.

6. Michael D. McDonnell: The Tics RTOS Programmer's Guide, www.TicsRealtime.com, 2004.

7. Daniel Martin: Determinism Extended to Better Understand and Anticipate, http://www.danielmartin.eu/emailaddress.htm,

January 1, 2009.

8. Jacob Fainguelernt: From MATLAB and Simulink to Real-Time with TI DSP’s, Rice University, Houston, Texas,

Connexions 2009.

9. Embedded Craft Site: Difference between Embedded Linux and Desktop Linux, embeddedcraft.org.

http://www.danielmartin.eu/emailaddress.htm

